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The energy needed to create a vortex core is the basic ingredient to address the physics of thermal vortex
fluctuations in underdoped cuprates. Here, we theoretically investigate its role in the occurrence of the
Beresinskii-Kosterlitz-Thouless transition in a bilayer film with inhomogeneity. From the comparison with
recent measurements of the penetration depth in two-unit-cell thin films, we can extract the value of the
vortex-core energy � and show that � scales linearly with Tc at low doping.
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One of the most puzzling aspects in the physics of high-
temperature superconductors �HTSCs�, which makes them
substantially different from conventional superconductors, is
the separation between the fundamental energy scales asso-
ciated with superconductivity: the critical temperature Tc, the
zero-temperature superconducting �SC� gap �, and the su-
perfluid stiffness Js=�2�sd� /4m.1 Here, �s is the superfluid
density, measured through the London penetration depth �,
and �sd� is an effective two-dimensional superfluid density,
where d� is a characteristic transverse length scale �see dis-
cussion below�. While in a BCS superconductor the gap for-
mation and the appearance of superfluid currents happen si-
multaneously at Tc, with ��Tc, in the HTSC at low doping
level the two phenomena are essentially decoupled, and Tc
�Js. This suggests that the transition can be controlled by
phase fluctuations, described within an effective XY model
for the phase degrees of freedom, where Js sets the scale of
the phase coupling. On a general ground, also the energetic
cost � needed to create the vortex core is connected to �−2,
i.e., to Js. Using standard BCS relations, one can see that at
T=0 both Js and � are of the order of the Fermi energy,
which is a large energy scale compared to Tc. Nonetheless, in
thin films of conventional superconductors, Js�T� goes to
zero as T approaches TBCS, and ��T��Js�T� is reduced, so
that vortex creation becomes possible but only at a Tc very
near to TBCS.

In underdoped cuprate superconductors, where the BCS
picture fails, a clear understanding of the typical energy scale
that controls the vortex-core formation is still lacking. In
particular, despite the fact that several experiments2,3 suggest
a predominant role of vortex fluctuations,4 whose occurrence
is controlled in a crucial way by the value of �,5–8 not much
attention has been devoted yet to characterize the vortex-core
energy � and its relation with Tc. In this Rapid Communica-
tion, we propose a procedure to estimate � using
penetration-depth measurements in thin films. Indeed, in this
case, the transition is ultimately of Beresinkii-Kosterlitz-
Thouless �BKT� type, as it is signaled by the linear relation
between Tc and Js, and its persistence as doping is changed
by the electric-field effect9,10 or chemical doping.11 To clarify
the role played by the vortex-core energy, let us recall some
basic features of the BKT physics in a SC film made of few
unit cells. In Y-based cuprates, whose data we will analyze

below, there are two strongly coupled CuO2 layers within
each cell, which will be considered in what follows as the
basic two-dimensional �2D� unit of the layered system, of
thickness d=12 Å, corresponding to the unit-cell size in the
c direction. Then, for an n-cell-thick SC film, one would
expect the system to behave as an effective two-dimensional
�2D� superconductor with areal density �s

2D=nd�s, where �s
is the three-dimensional superfluid density connected to the
penetration depth �. The energy scale to be compared to the
temperature is then

Jn =
�2�s

2D

4m
=

nd�2�s

4m
=

nd

�2

�0
2

4�2�0
, �1�

where �0= �h /2e� is the flux quantum and �0 the vacuum
permittivity; we used MKS units as in Ref. 11. According to
the BKT theory, a transition is expected when Jn /T equals
the universal value 2 /�, which gives the following relation
in terms of 1 /�2�T�:

0.62 	
nd �Å�

�2�TBKT
n ���m2�

=
2

�
TBKT

n �K� . �2�

This approach assumes that all the layers of the film are so
strongly coupled that no mismatch of the SC phase in neigh-
boring layers is possible, i.e., the film behaves as an effective
2D layer of total thickness nd. However, in the case of cu-
prates, it is well known that the intercell Josephson coupling
J� is very weak, so that except in a narrow region around Tc
one expects to see the BKT behavior of a single unit cell. As
far as the superfluid-density behavior is concerned, one will
then expect that the superfluid density has already dropped
when Eq. �2� with n=1 is satisfied, which is certainly the
case for totally uncoupled cells. The best situation to analyze
this effect in real systems is provided by the finite-frequency
sheet conductivity measurements of thin Y1−xCaxBa2Cu3O7−


�YBCO� films by Hetel et al.11 Indeed, in these two-unit-cell
thick samples, the superfluid-density downturn is necessarily
between TBKT

n=1 and TBKT
n=2 , and its exact form depends on the

relative strength of J� and vortex-core energy. As we shall
see, this allows us to extract from the data of Ref. 11 the
doping dependence of the vortex-core energy.

As a starting point, we need a model for the BKT SC
transition in the two-layer system where, for simplicity, we
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denote a single unit cell of the sample with “layer” in the
following. By adopting the formal analogy between quantum
one-dimensional �1D� and thermal 2D systems,6,12 we de-
scribe each layer �labeled with the subscript 1,2, respec-
tively� as a quantum 1D sine-Gordon model ��
��dxvs / �2���,

H1,2 = H1,2
0 −

gu

a2 � cos�2�1,2� , �3�

H0 =� 	K��x�1,2�2 +
1

K
��x�1,2�2
 . �4�

Here, �i represent the SC phases, �i are the conjugate fields,
with ��i�x�� ,�x� j�x��= i�
ij
�x�−x�, K is the Luttinger-liquid
parameter, gu is the strength of the sine-Gordon potential, a
is the short-distance cutoff, and vs is the velocity of 1D fer-
mions �which is immaterial in the 1D-2D mapping where vs

plays the role of the second spatial dimension,6,12 
 being the
imaginary time�. A vortex configuration for the � variable
requires that ���= �2� over a closed loop, i.e., the creation
of a 2� kink, generated by the exponential of its conjugate
field, the operator ei�.12 Thus, the parameter K defines the
superfluid stiffness and gu, the vortex fugacity, as

K �
�J

T
, gu = 2�e−��, �5�

where J�Jn=1 is the single-layer stiffness. Within the stan-
dard 2D XY model for the phase, the vortex-core energy � is
controlled by J itself,5,13

�XY = �J ln�2�2e�� 

�2

2
J , �6�

where � is the Euler’s constant. Even though we will treat �
as an independent parameter to be fixed by comparison with
the experiments, for the sake of clarity we will measure it in
multiples of �XY. The effect of the Josephson coupling J� is
accounted for by the term

H� = −
g�

a2 � cos��1 − �2� , �7�

where g�=�J� /T. As we shall see below, the interlayer cou-
pling is relevant under renormalization group �RG� flow and
tends to lock the phases in neighboring layers. When this
effect dominates over the vortex unbinding, the superfluid
density is not affected by crossing TBKT

n=1 . As T increases fur-
ther an additional coupling generated under RG flow be-
comes relevant and induces the 2D transition at TBKT

n=2 . It cor-
responds to the formation of a vortex simultaneously in two
layers,

gs

a2 � cos�2��1 + �2�� . �8�

It is then clear that a more convenient basis to study the
system is given by the symmetric/antisymmetric fields, �s,a
= ��1��2� /�2. The full Hamiltonian then becomes

H = Ha
0�Ka� + Hs

0�Ks� +
4gu

a2 � cos��2�s�cos��2�a�

−
2g�

a2 � cos��2�a� +
2gs

a2 � cos�2�2�s� , �9�

where H0 is defined in Eq. �4�, Ks,a=K, and the initial value
of gs is zero, even though it is generated at O�gu

2� under RG
flow �see Eq. �15� below�. The superfluid density Js is con-
nected to the second-order derivative of the free energy with
respect to an infinitesimal twist 
 of the phase, �x�i→�x�i
−
. Since the �a field is unchanged by this transformation
while �x�s→�x�s−�2
, we immediately see that Js is given
by the asymptotic value of Ks��� under RG flow,

Js �
�2�s

2D

4m
=

Ks�� → ��T
�

. �10�

The perturbative RG equations for the couplings Ka, Ks, gu,
g�, and gs can be derived by means of the operator product
expansion. The result is �see also Refs. 6,14–16�

dKa

d�
= 2g�

2 − Ka
2gu

2, �11�

dgu

d�
= �2 −

Ka + Ks

2
�gu − gugsKs, �12�

dKs

d�
= − gu

2Ks
2 − 2gs

2Ks
2, �13�

dg�

d�
= �2 −

1

2Ka
�g�, �14�

dgs

d�
= �2 − 2Ks�gs +

1

2
gu

2�Ks − Ka� , �15�

with �=log�a /a0�, where a0 and a are the original and RG
rescaled lattice spacings, respectively. Equations �11�–�15�
share many similarities with the multilayer case discussed in
Ref. 6. If the layers are uncoupled �g�=0�, then Ks=Ka at all
scales, and the transition occurs when gu flows to a strong
coupling. This happens at Ks=2, which corresponds to TBKT

n=1

according to definitions �1�, �2�, and �5�. However, when the
layers are coupled, g� grows under RG flow, even if it ini-
tially has a small value. If the bare couplings—which are T
dependent—are such that g� becomes of order 1 before gu is,
the Josephson coupling term will lock the relative phase �a in
neighboring layers and gu will flow to zero even if Ks�2.
However, as soon as Ks=2, the gs coupling becomes rel-
evant, signaling the simultaneous vortex formation in the two
layers. These effects make gu relevant as well, and the super-
fluid stiffness Ks jumps suddenly from the value Ks=1 at
TBKT

n=2 to zero.
As discussed in Ref. 6, the range of temperature above

TBKT
n=1 where the interlayer coupling allows the system to sus-

tain a finite superfluid density, is not universal and depends
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crucially on the value of the vortex-core energy, which sets
the initial value of the fugacity gu �see Eq. �5��. Thus, at
small � the system will display a rapid downturn already at
TBKT

n=1 , followed by an abrupt jump at TBKT
n=2 , while for large

values of � we expect to see only the signature of the two-
layer BKT transition at TBKT

n=2 . This is indeed what we observe
in the experimental data of Ref. 11. While at higher dopings
�25 K�Tc�40 K� the superfluid density shows a clear
downturn already at TBKT

n=1 , as the doping is decreased further
this signature disappears and only the BKT jump at TBKT

n=2 is
visible �see the inset of Fig. 1�. To have a quantitative esti-
mate of �, we calculated Js by a numerical integration of
Eqs. �11�–�15�, stopped at a scale �* where g�=s�O�1� �we
used s=3� to account for the perturbative character of the RG
equations. The bare temperature dependence of the super-
fluid density mimics the low-T behavior of the data, J�T�
=J�T=0�−�T2, with J�T=0� and � extracted from the ex-
perimental data well below the transition. We also assume
that J� /J is independent of doping, and we choose J� /J
=10−3, which is appropriate in the range of doping
considered.17 Thus, the only remaining free parameter is �,
which can be chosen by fitting the temperature dependence
of the data around the transition. The result, reported in Fig.
1 as �−2�T�, is in excellent agreement with the data of Ref.
11.

According to the previous discussion, at TBKT
n=2 the super-

fluid density should display a BKT jump, while the data of
Ref. 11 show clearly a broad tail around the estimated TBKT

n=2 .
This effect, along with the temperature dependence of the
real part of the conductivity, cannot be attributed only to the
finite frequency of the measurements. Instead, the simplest
explanation is the existence of a Tc inhomogeneity in the
sample, which we accounted for in the fit of Fig. 1. To clarify
this point, let us discuss for simplicity the pure 2D case for a
two-layer thick film. In this case, after a transient regime the
RG flow of Eqs. �11�–�15� is simplified to

dKs

d�
= − 2Ks

2gs
2,

dgs

d�
= �2 − 2Ks�gs, �16�

with a fixed point at Ks=1, which corresponds to TBKT
n=2 in Eq.

�2�. The complex conductivity �=�1+ i�2 at a finite fre-
quency � is given by

���� = −
1

�2e2�0

1

i�����
, �17�

where ����=�1+ i�2 is a complex dielectric constant due to
bound and free vortex excitations. Following the dynamical
theory of Ambegaokar et al.18 and Halperin and Nelson,19 we
estimate these two contributions by using the RG flow �Eq.
�16�� of the BKT couplings and by evaluating ���� at the
finite scale ��=log�r� /a�. Here, r�=�14D /� is the maxi-
mum length probed by the oscillating field, where D�� /m
=1016 Å /s is the diffusion constant of vortices and � the
frequency of the measurements. According to Eqs. �17� and
�1�, �−2=�0��2. Due to the finite frequency, the jump of �−2

expected in the �=0 case is replaced by a sharp but continu-
ous drop in a range �T� above TBKT

n=2 . At the same time, �1
acquires a finite value, with a peak of approximately the
same width �T�. However, using the value �=50 KHz cor-
responding to the experiments of Ref. 11 the rounding effect
on �−2 and the peak width in �1, reported in Fig. 2�a�, are
still much smaller than what are measured experimentally. A
more reasonable explanation for the large transient region is
the sample inhomogeneity. Such inhomogeneity is also sug-
gested by tunneling measurements in other families of
cuprates,20 where approximately Gaussian fluctuations of the
local gap value are observed. Even though the issue of the
microscopic origin of this effect is beyond the scope of this
Rapid Communication, we nonetheless find that an analo-
gous distribution of the superfluid-stiffness J0 values around

a given J̄ can account very well for the data of Ref. 11. Thus,
we compare with the experiments the quantity Jinh�T�
=�dJ0P�J0�J�T ,J0�, where each J�T ,J0� curve is obtained
from the RG equations �Eqs. �11�–�15�� using a bare super-
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FIG. 1. �Color online� Temperature dependence of the superfluid
density in the inhomogeneous bilayer system, with parameter val-
ues explained in the text. The downturn is located at the intersection
with the line n=1 or n=2 for uncoupled or totally coupled layers,
respectively. Inset: expanded view for the most underdoped case.
The dashed-dotted line is the result obtained without averaging over
the J0 inhomogeneity.
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FIG. 2. �Color online� �a� 1 /�2 and �0��1 evaluated at �

=50 kHz for a single J̄�T� curve �here, �=3�XY�. The finite fre-
quency leads to a sharp but continuous decrease of 1 /�2 across
TBKT, along with a peak in �1. �b� 1 /�2 and �0��1 evaluated at
finite frequency using the averaged Jinh. Also shown for comparison
is the homogeneous curve of panel �a� �dashed-dotted line�.
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fluid stiffness J=J0−�T2. Each initial value J0 has a prob-
ability P�J0�=exp�−�J0− J̄0�2 /2�2���2��� of being realized,

where the bare average stiffness J̄�T�= J̄0−�T2 has J̄0 and �
fixed by the experimental data at low T, where Jexpt�T� is

practically the same as J̄�T�. However, using a variance �

=0.05J̄0, we obtain a very good agreement with the experi-
ments near the transition, as far as both the tail of �−2 and the
position and width of �1��� are concerned �see Fig. 2�b��.
Observe also that such a variance can be compatible, within
an intermediate-coupling scheme for the superconductivity,
with the few times larger distribution of gap values
���0.15�̄� reported in tunneling experiments.20

The same finite-frequency analysis is made more involved
in the bilayer case because the RG equations �Eqs. �11�–�15��
should be stopped at scales smaller than �� to prevent the
flow of the g� at strong coupling. Thus, in Fig. 1, we in-
cluded only the effect of the Tc inhomogeneity by means of
the average over P�J0� discussed above �with �=0.06J̄0 for
the most underdoped samples�. This procedure accounts very
well for the long tails of �−2 above the transition �see inset�
without affecting significantly the estimate of �.

Let us now comment on the doping dependence of ��T
=0� reported in Fig. 3. As we have said, the measured Tc

crosses over from approximately TBKT
n=1 at high doping to TBKT

n=2

at low doping. This is reflected in the doping dependence of
� /�XY: Indeed, as we observed for the multilayer case,6 as �
increases with respect to the single-layer stiffness J, the tran-
sition moves away from TBKT

n=1 . It is worth noting that since Tc
is controlled by the competition between the vortex fugacity
and the interlayer coupling, in principle, the crossover of Tc

from TBKT
n=1 to TBKT

n=2 could be obtained also by keeping � fixed
and by varying J�. However, to reproduce the data, we
should assume in this case an unlikely increase in J� by 2
orders of magnitude as the doping is decreased up to J� /J
�10−1. Despite the nonuniversal behavior of � /�XY, the ab-
solute value of � reported in Fig. 3�b� scales linearly with Tc.

This is our central result, which establishes a precise relation
between the vortex-core energy and Tc in severely under-
doped cuprate superconductors.

In summary, we analyzed the occurrence of the BKT tran-
sition in a bilayer system. By means of the RG approach, we
computed the temperature dependence of the superfluid stiff-
ness of the bilayer, and we proved the crucial role played by
the vortex-core energy � in controlling the transition. Taking
into account also the sample inhomogeneity, we provided an
excellent fit of the experimental data of Ref. 11, which al-
lowed us to extract a linear scaling of � with Tc in under-
doped YBCO. A theoretical understanding of this result is
still lacking, and no doubt it would constitute a stringent test
of microscopic proposals for the underdoped phase.
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FIG. 3. �Color online� Vortex-core energy as a function of Tc

extracted from the fit in Fig. 1. �a� Ratio between � and the �XY

value �Eq. �6��, proportional to the single-layer energy J. �b� Abso-
lute value of � in K. The dashed line is �=8Tc.
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